空压机以旧“焕”新

旧机置换 | 不限品牌 | 机房焕新 | 不限机型
2024 阿特拉斯·科普柯以旧“焕”新方案出炉

空压机以旧“焕”新

旧机置换 | 不限品牌 | 机房焕新 | 不限机型
2024 阿特拉斯·科普柯以旧“焕”新方案出炉

空压机以旧“焕”新

旧机置换 | 不限品牌 | 机房焕新 | 不限机型
2024 阿特拉斯·科普柯以旧“焕”新方案出炉

空压机以旧“焕”新

旧机置换 | 不限品牌 | 机房焕新 | 不限机型
2024 阿特拉斯·科普柯以旧“焕”新方案出炉

空压机以旧“焕”新

旧机置换 | 不限品牌 | 机房焕新 | 不限机型
2024 阿特拉斯·科普柯以旧“焕”新方案出炉

空压机以旧“焕”新

旧机置换 | 不限品牌 | 机房焕新 | 不限机型
2024 阿特拉斯·科普柯以旧“焕”新方案出炉

空压机以旧“焕”新

旧机置换 | 不限品牌 | 机房焕新 | 不限机型
2024 阿特拉斯·科普柯以旧“焕”新方案出炉

空压机以旧“焕”新

旧机置换 | 不限品牌 | 机房焕新 | 不限机型
2024 阿特拉斯·科普柯以旧“焕”新方案出炉

空压机以旧“焕”新

旧机置换 | 不限品牌 | 机房焕新 | 不限机型
2024 阿特拉斯·科普柯以旧“焕”新方案出炉

空压机以旧“焕”新

旧机置换 | 不限品牌 | 机房焕新 | 不限机型
2024 阿特拉斯·科普柯以旧“焕”新方案出炉

您需要了解的一切关于气力输送流程的信息

了解如何创建效率更高的气力输送流程。
3D images of blowers in cement plant

使用空气压缩机控制系统优化您的装置

我们新推出的 Optimizer 4.0 中央控制器有助于使您的系统保持稳定并降低您的能源成本。
空气压缩机 Optimizer 4.0 中央控制器

使用空气压缩机控制系统优化您的装置

我们新推出的 Optimizer 4.0 中央控制器有助于使您的系统保持稳定并降低您的能源成本。
空气压缩机 Optimizer 4.0 中央控制器

使用空气压缩机控制系统优化您的装置

我们新推出的 Optimizer 4.0 中央控制器有助于使您的系统保持稳定并降低您的能源成本。
空气压缩机 Optimizer 4.0 中央控制器

使用空气压缩机控制系统优化您的装置

我们新推出的 Optimizer 4.0 中央控制器有助于使您的系统保持稳定并降低您的能源成本。
空气压缩机 Optimizer 4.0 中央控制器
关闭

使用变压吸附 (PSA) 技术制氮

能够自已制取氮气意味着可以掌控氮气 (N2) 的供应。这对于每天都要使用氮气的很多企业来说好处多多。那么,这对您的公司意味着什么呢?通过自主制氮,您不必依赖第三方的供应,还能节省处理、灌注和运输成本。变压吸附是其中的一种制氮方法。 

变压吸附的工作原理是什么?

在生产自用的氮气时,了解并理解您想要达到的纯度水平非常重要。某些应用需要较低的纯度水平(介于 90% 和 99% 之间),例如轮胎充气和防火,而其他应用(例如食品和饮料行业或注塑行业)则需要较高的纯度水平(97% 到 99.999%)。在这些情况下,PSA 技术是理想而又简单的方法。实际上,制氮机是通过将压缩空气中的氮分子与氧分子分离来工作的。变压吸附通过吸附方式从压缩空气流中捕获氧气来实现这一目的。吸附是在分子与吸附剂相结合时进行的,在制氮情况下,氧分子吸附到碳分子筛 (CMS) 上。这一过程发生在两个单独的压力容器中,每个容器都装有 CMS,可在分离过程和再生过程之间切换。让我们暂时将它们称为塔 A 和塔 B。一开始,洁净干燥的压缩空气进入塔 A,由于氧分子比氮分子小,它们将进入碳分子筛的孔中。另一方面,氮分子不能进入孔中,而会绕过碳分子筛。这样,您就会获得所需纯度的氮气。此阶段称为吸附或分离阶段。然而,过程并没有结束。塔 A 中生成的大多数氮气离开系统(可直接使用或存储起来),而有一小部分制取的氮气则沿着相反的方向(从上到下)流入塔 B。 

此流量用于排出在塔 B 的上一吸附阶段中捕获的氧气。通过释放塔 B 中的压力,使碳分子筛丧失容纳氧分子的能力。氧分子将从筛中分离出来,并被来自塔 A 的少量氮气流通过排气带走。通过这种方式,系统为新的氧分子在下一吸附阶段吸附到分子筛上提供了空间。我们将这种“净化”过程称为氧饱和塔再生。

制氮过程示意图。在第一个阶段,塔 A 处于吸附阶段,而塔 B 处于再生阶段。在第二个阶段,两个容器平衡压力,随后塔 A 开始再生,而塔 B 开始制氮。

在第一个阶段,塔 A 处于吸附阶段,而塔 B 处于再生阶段。在第二个阶段,两个容器平衡压力,准备切换角色。切换后,塔 A 开始再生,而塔 B 开始制氮。

此时,两个塔中的压力将达到平衡,二者的角色互换,一个由吸附变为再生,另一个则由再生变为吸附。塔 A 中的碳分子筛将逐渐饱和,而塔 B 已经释放压力,将能够重新开始吸附过程。此过程也称为“变压”,意味时允许在较高的压力下捕获特定气体并在较低的压力下释放。双塔 PSA 系统允许以所需纯度水平连续制氮。

氮气纯度和对进气的要求

了解每种应用所需的纯度水平从而有目的地自行制氮非常重要。不过,对于进气来说,有一些通用的要求。进入制氮机之前,压缩空气必须清洁和干燥,这不仅对于保证氮气质量非常有利,还能防止湿气造成碳分子筛损坏。此外,进气温度和压力应分别控制在 10 至 25°C 之间,以及保持在 4 至 13 bar 之间。为确保正确地处理空气,应在压缩机和制氮机之间配备干燥机。如果进气来自油润滑压缩机,则还应安装油聚结和碳过滤器,以便滤除掉压缩空气中的所有杂质之后,压缩空气才能进入制氮机。大多数制氮机都安装了压力、温度和压力露点传感器,确保制氮机的防故障自动运行,防止被污染的空气进入 PSA 系统并损坏其部件。

典型安装:空气压缩机、干燥机、过滤器、储气罐、制氮机、储氮罐。可以直接使用制氮机排出的氮气,也可以通过额外的缓冲罐(图中未显示)来使用氮气。

PSA 制氮的另一个重要参数是空气因数。对于制氮机系统而言,它是非常重要的参数之一,因为它决定了获得特定流量的氮气所需的压缩空气。因此,空气因数可指示制氮机的效率,也就是说,空气因数越小,效率就越高,当然总运行成本也就越低。

选择 PSA 制氮机还是膜式制氮机

 

PSA

膜片

可实现的纯度

效率达 99.999%

效率达 99.9%

效率

更高

性能与温度

高温下较低

高温下更高

系统复杂性

保养强度

非常低

压力稳定性

进气/出气波动

稳定

流量稳定性

进气/出气波动

稳定

起动速度

分钟/小时

对水(蒸气)的敏感性

压力露点高达 8°C

不得有液态水

对油的敏感性

不允许有油 (< 0.01mg/m³)

不允许有油 (< 0.01mg/m³)

噪声水平

高(放空峰值)

非常低

重量

相关文章

an illustration about compressed air in the atlas copco air wiki.

氮气:它是什么以及有何作用?

2022年04月22日

氮气在我们的周围无处不在。在我们所呼吸的空气中,它所占的比例最高,但呼入的氮气并不能为我们人体所用。在本文中,我们将介绍氮气的一些用途。